Map component documentation V1.0

2005.02.02
www.connect2001.com

Important: All structure is in 4 bytes aligned.
Nodes

All node has marker end text(title).

The map objects have nodes like:

 Point have 1 node.

 Region have 1 node on the center position from mif.

 Line have 1 or more nodes, because if a line is long, so the DDDengine makes automatically more nodes on the line.

struct mapnodestruct{

 float x,y;

-
position on map

 float x1,y1;
-
reserved

 float x2,y2;
-
reserved

 char title[1000];
- drawed text, the max long is 1000 character

 int nodeid,polys;
- reserved

};

MapLayer

When the layer is rendering, so it will not clear the screen buffer data, because it avoid the buffer write more than once, therefore you need keep the render order by the creation order. So render the most top layer firstly.

struct maplayerstruct {

 mapnodestruct* nodes;

- node buffer (see up)

 linearraystruct* lines;
- line buffer

 dynamicarraystruct polys;
- polygon buffer

 int nodenum;

- used nodes

 float minx,miny,maxx,maxy;
- layer bounding box

 int columns_number;

- number of MID structure info

 bool *visiblity;

- layer visiblity

 char columns[100][100];
- MID structure info

 int texture;

- When the regions are covered a texture it is the texture id else –1 (see loadtexture in DDDengine dcoumentation)

 int polynum;

- reserved

 float zvisible,textzvisible;
-
layer/text visiblity when they are under Z (scale factor), 0 – allways visible

 DWORD color;
- layer color (you need initialize it before you load the layer), format: ARGB - ’A’ (alpha) must be not zero (normally 0xff – 0xff000000 is the black)

 DWORD fontcolor; - fontcolor (font color in real time), format: see up at the color

 float wide;
 - line’s wide, 0 is the no wide line mode

 float signsize;
 - marker, and font size: 0 – normal, it automatically calculate the text’s wide to the marker size, when it is not 0, so the markes’s size is independed by the text’s wide.

 int markerid; - marker id (see: MIF documentation), -1 disable it

 bool polyregion; - fill the regions

 bool alwaysline; - draw center line into the wideline (typically to highway)

 bool centerenabled; - the region node position is from the mif file, or when it is disabled, so the position will be calculated form the geomtery structure.

 bool alpha;
 - alpha mode when yor layer is transparent (it disable the Z buffer)

};

Mif region’s geometry requirements:

 All regions need be closed, and the outline must be continuous. And the lines could not cross the own geometry, in this happend the gemoetry converter will

 correct this error, and log it in the log file like here:

[image: image1.png]

MapView package documentation

 LayerOptions=record

 Visible: Boolean;
-
Layer visibility

 end;

 TMarker=class

 X,Y,size : Double;

-
Map coordinates

 PictureID : Integer;
-
Marker id , -1 disable the marker

 title: PChar;

-
text , nil disable it

 end;

TMapLayer = class

 maplayer : maplayerstruct;

- maplayerstruct (see up)

 options : LayerOptions;

- LayerOptions (see up)

 MapPath : String;

- reserverd

 DataDescriptor : String;

- reserved

procedure LoadFromPath(MapPath: PChar);

· Mif load

procedure LoadFromPathEx(MapPath:PChar; texture:PChar; offsetx,offsety,sclx,scly:dxfloat);

· Mif load with texture, where the texture is the texture name and path, and offsetx,offsety are the texture shift on the geometry, and the sclx,scly are the scale factors of the texture.

· Texture specification:

BMP,JPG, or 24 bits TGA, or 32 bits TGA with alpha channel, or DDS (DirectX format) form some directX tool.

function Search(SearchMask: String; var ResultList:TList):Integer;

· Not impemented

procedure SaveMap(MapPath:PChar);

· Save own map layer. MapPath is the new path, and name. It save the converted, and filled polygons, so it can be faster to read again.

TMapView = class(TPanel)
 Public

 compassid :integer;
- compass texture id, -1 disable it

 MapLayers : TList;
- Created MapLayers;

 Markers : TList;
- Created Markers;
 procedure ClearMapLayers;

· Delete the layers.

 function AddMap(MapPath:PChar):Integer;

· Add a new layer.

MapPath : the mif file path, and name without extensions. All mif file have to have a mid file. When the MapPath is nil, so the new layer will not loaded, anyway it makes a clean layer.

 function AddMapEx(MapPath:PChar; texture:PChar; offsetx,offsety,sclx,scly:dxfloat):Integer;

· Add a new layer with extensions. See up.: AddMap, LoadFromPathEx
 procedure AddMarker(X,Y,size:Double; Marker:integer;text:PChar);

· Add a new marker onto a independed layer.
X,Y: map coordinates
 Marke: marker id (see mif documentation), -1 disable it

 Text: marker title, nill disable it

 procedure AddMarkerAtMouse(size:Double;Marker:integer;text:PChar);

· Like the AddMarker at the mouse position.

 procedure MapCoordAtMouse(var x,y:Double);

· Get the mapcoordinates at the mouse position.

Out X,Y : map coordinates

 procedure MapCoordAtPosition(var x,y:Double);

· Like the MapCoordAtMouse at on specified position.

In X,Y : screen coordinates in percent [0-1]

Out X,Y : map coordinates

 procedure ScreenCoordAtMapPosition(var x,y:Double);

· Convert map coordiantes to screen coordiantes.

In X,Y : map coordinates
Out X,Y : screen coordinates
 procedure ClearMarkers;
Delete the marker list.

 procedure SetMapMatrix(x,y,z,rotz:double);

Set map matrix to x,y,z position with z rotation (in radian).

Note: The engine is setting this matrix in the message handler. If you want avoid it, so you need rewrite it before all render.

 procedure GetMapMatrix(var x,y,z,rotz:double);

Get map matrix to x,y,z position with z rotation (in radian).

 procedure ResetMatrix();

Scale the matrix to see all layer on the screen.

 procedure Resize(x,y:integer);

It is automatically, but you can force resize the frame buffer size, but the frame buffer will streched into the MapView frame.
 procedure Render;

Redraw the screen.
 procedure Present;

Copy the frame buffer to the MapView frame. It does not redraw the map.

 published

 property RefreshTime :Integer read fRefreshTime write fSetRefreshTime;

- refresh time, when the component is active (see below)

 property Active :Boolean read fActive write fSetActive;

- Component is actived

 end;

_1169193318

